

High and low power microwaves for the stabilisation of nuclear fusion plasmas

Marco de Baar

DIFFER is part of FOM and NWO

RF Technology days, Leiden, 2 April 2014

- DT temperature
- High DT density $n \sim 10^{20} m^{-3}$
- High energy confinement time $\boldsymbol{\tau}$

Fusion figure of merit: $n\tau T$

~ 200 MK

Т

Flux surfaces

- Density and temperature
- Field lines embedded

Layout flux surfaces a-priory unknown

- Current distribution in plasma (li)
- Plasma pressure (β)
- Current distribution external coils **TU**

Technische Universiteit Eindhoven University of Technology

What is the resistive β limit ?

Pulse No. 49550- High δ configuration

Focus on the optimisation of plasma control Systems: Integrated optimisation of its elements

R Electron Cyclotron Resonance

Dutch Institute for Fundamental Energy Research

Electrons bound by magnetic field:

Cyclotron frequency for electrons:

$$\omega_c = \frac{eB}{m_e}$$

- electron charge
 - electron rest mass.

f_c ~ n.28 GHz / Tesla Microwaves

Actuator: EC Current Drive

ECCD: Injection of high power microwaves at the cyclotron frequency under a toroidal angle.

Direct local current drive to optimise or 'repair' the plasma

$$\omega = \frac{n\omega_c}{\gamma} + k_{par} v_{par}$$

Heating of selected v_{par} Absorbed energy mainly to v_{per} Reduces collisionality population Increased current

DIFFER Radial location tearing mode

DIFFER In-line ECE for mode location

- Advantages:
 - No beam tracing and equilibrium reconstruction required
 - Guarantees alignment even when launcher orientation is perturbed or calibration is lost
 TU/e Technische Universiteit Eindhoven University of Technology

PLL for Phase tracking of island successfully applied

Textor results proof of principle. But how to implement with -Corrogated wave guides?

-CW?

Kasparek et al., IFP Stuttgart

Dr. Waldo Bongers, Progress of In-line ECE at ASDEX-Upgrade, EC17, Deurne, The Netherlands, Wednesday, 9 may, Session ECE-2, 9:20

AUG inline ECE setup

From Gyrotrons

To Tokamak

Dr. Waldo Bongers, Progress of In-line ECE at ASDEX-Upgrade, EC17, Deurne, The Netherlands, Wednesday, 9 may, Session ECE-2, 9:20

- High and low power μ -waves for plasma stabilisation
- High power:Local current drive inside island (ECCD)
- Low power: Local measurement island position (ECE)
- In-Line ECE: Integration ECE-ECCD in transmission line.
- High quality notch at gyrotron frequency
 - Quasi-optical (TEXTOR)
 - CW, waveguides (AUG)

